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ModTools-package Regression and Classification Tools

Description

There is a rich selection of R packages implementing algorithms for classification and regression
tasks out there. The authors legitimately take the liberty to tailor the function interfaces according
to their own taste and needs. For us other users, however, this often results in struggling with user
interfaces, some of which are rather weird - to put it mildly - and almost always different in terms
of arguments and result structures. ModTools pursues the goal of offering uniform handling for the
most important regression and classification models in applied data analyses.
The function FitMod() is designed as a simple and consistent interface to these original functions
while maintaining the flexibility to pass on all possible arguments. print, plot, summary and
predict operations can so be carried out following the same logic. The results will again be
reshaped to a reasonable standard.
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For all the functions of this package Google styleguides are used as naming rules (in absence of
convincing alternatives). The ’BigCamelCase’ style has been consequently applied to functions
borrowed from contributed R packages as well.

As always: Feedback, feature requests, bugreports and other suggestions are welcome!

Details

The ModTools::FitMod()) function comprises interfaces to the following models:

Regression:
lm() Linear model OLS (base)
lmrob() Robust linear model (robustbase)
poisson() GLM model with family poisson (base)
negbin() GLM model with family negative.binomial (MASS)
gamma() GLM model with family gamma (base)
tobit() Tobit model for censored responses (package AER)

Classification:
lda() Linear discriminant analysis (MASS)
qda() Quadratic discriminant analysis (MASS)
logit() Logistic Regression model glm, family binomial(logit)(base)
multinom() Multinomial Regression model (nnet)
polr() Proportional odds model (MASS)
rpart() Regression and classification trees (rpart)
nnet() Neuronal networks (nnet)
randomForest() Random forests (randomForest)
C5.0() C5.0 tree (C50)
svm() Support vector machines (e1071)
naive_bayes() Naive Bayes classificator (naivebayes)
LogitBoost() Logit boost (using decision stumps as weak learners) (ModTools)

Preprocess:
SplitTrainTest() Splits a data frame or index vector into a training and a test sample
OverSample() Get balanced datasets by sampling with replacement.

Manipulating rpart objects:
CP() Extract and plot complexity table of an rpart tree.
Node() Accessor to the most important properties of a node, being a split or a leaf.
Rules() Extract the decision rules from top to the end node of an rpart tree.
LeafRates() Returns the misclassification rates in all end nodes.
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Prediction and Validation:
Response() Extract the response variable of any model.
predict() Consistent predict for FitMod models
VarImp() Variable importance for most FitMod models
ROC() ROC curves for all dichotomous classification FitMod models
BestCut() Find the optimal cut for a classification based on the ROC curve.
PlotLift() Produces a lift chart for a binary classification model
TModC() Aggregated results for multiple FitMod classification models
Tune() Tuning approaches to find optimal parameters for FitMod classification models.
RobSummary() Robust summary for GLM models (poisson).

Tests:
BreuschPaganTest() Breusch-Pagan test against heteroskedasticity.

Warning

This package is still under development. You should be aware that everything in the package might
be subject to change. Backward compatibility is not yet guaranteed. Functions may be deleted or
renamed and new syntax may be inconsistent with earlier versions. By release of version 1.0 the
"deprecated-defunct process" will be installed.

Author(s)

Andri Signorell
Helsana Versicherungen AG, Health Sciences, Zurich
HWZ University of Applied Sciences in Business Administration Zurich.

Includes R source code and/or documentation previously published by (in alphabetical order):
Bernhard Compton, Marcel Dettling, Max Kuhn, Michal Majka, Dan Putler, Jarek Tuszynski, Robin
Xavier, Achim Zeileis

The good things come from all these guys, any problems are likely due to my tweaking. Thank you
all!

Maintainer: Andri Signorell <andri@signorell.net>

Examples

r.swiss <- FitMod(Fertility ~ ., swiss, fitfn="lm")
r.swiss
# PlotTA(r.swiss)
# PlotQQNorm(r.swiss)

## Count models
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data(housing, package="MASS")

# poisson count
r.pois <- FitMod(Freq ~ Infl*Type*Cont + Sat, family=poisson, data=housing, fitfn="poisson")

# negative binomial count
r.nb <- FitMod(Freq ~ Infl*Type*Cont + Sat, data=housing, fitfn="negbin")
summary(r.nb)

r.log <- FitMod(log(Freq) ~ Infl*Type*Cont + Sat, data=housing, fitfn="lm")
summary(r.log)

r.ols <- FitMod(Freq ~ Infl*Type*Cont + Sat, data=housing, fitfn="lm")
summary(r.ols)

r.gam <- FitMod(Freq ~ Infl*Type*Cont + Sat, data=housing, fitfn="gamma")
summary(r.gam)

r.gami <- FitMod(Freq ~ Infl*Type*Cont + Sat, data=housing, fitfn="gamma", link="identity")
summary(r.gami)

old <-options(digits=3)
TMod(r.pois, r.nb, r.log, r.ols, r.gam, r.gami)
options(old)

## Ordered Regression

r.polr <- FitMod(Sat ~ Infl + Type + Cont, data=housing, fitfn="polr", weights = Freq)

# multinomial Regression
# r.mult <- FitMod(factor(Sat, ordered=FALSE) ~ Infl + Type + Cont, data=housing,
# weights = housing$Freq, fitfn="multinom")

# Regression tree
r.rp <- FitMod(factor(Sat, ordered=FALSE) ~ Infl + Type + Cont, data=housing,

weights = housing$Freq, fitfn="rpart")

# compare predictions
d.p <- expand.grid(Infl=levels(housing$Infl), Type=levels(housing$Type), Cont=levels(housing$Cont))
d.p$polr <- predict(r.polr, newdata=d.p)
# ??
# d.p$ols <- factor(round(predict(r.ols, newdata=d.p)^2), labels=levels(housing$Sat))
# d.p$mult <- predict(r.mult, newdata=d.p)
d.p$rp <- predict(r.rp, newdata=d.p, type="class")

d.p

# Classification with 2 classes ***************

r.pima <- FitMod(diabetes ~ ., d.pima, fitfn="logit")
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r.pima
Conf(r.pima)
plot(ROC(r.pima))
OddsRatio(r.pima)

# rpart tree
rp.pima <- FitMod(diabetes ~ ., d.pima, fitfn="rpart")
rp.pima
Conf(rp.pima)
lines(ROC(rp.pima), col=hblue)
# to be improved
plot(rp.pima, col=SetAlpha(c("blue","red"), 0.4), cex=0.7)

# Random Forest
rf.pima <- FitMod(diabetes ~ ., d.pima, method="class", fitfn="randomForest")
rf.pima
Conf(rf.pima)
lines(ROC(r.pima), col=hred)

# more models to compare

d.pim <- SplitTrainTest(d.pima, p = 0.2)
mdiab <- formula(diabetes ~ pregnant + glucose + pressure + triceps

+ insulin + mass + pedigree + age)

r.glm <- FitMod(mdiab, data=d.pim$train, fitfn="logit")
r.rp <- FitMod(mdiab, data=d.pim$train, fitfn="rpart")
r.rf <- FitMod(mdiab, data=d.pim$train, fitfn="randomForest")
r.svm <- FitMod(mdiab, data=d.pim$train, fitfn="svm")
r.c5 <- FitMod(mdiab, data=d.pim$train, fitfn="C5.0")
r.nn <- FitMod(mdiab, data=d.pim$train, fitfn="nnet")
r.nb <- FitMod(mdiab, data=d.pim$train, fitfn="naive_bayes")
r.lda <- FitMod(mdiab, data=d.pim$train, fitfn="lda")
r.qda <- FitMod(mdiab, data=d.pim$train, fitfn="qda")
r.lb <- FitMod(mdiab, data=d.pim$train, fitfn="lb")

mods <- list(glm=r.glm, rp=r.rp, rf=r.rf, svm=r.svm, c5=r.c5
, nn=r.nn, nb=r.nb, lda=r.lda, qda=r.qda, lb=r.lb)

# insight in the Regression tree
plot(r.rp, box.palette = as.list(Pal("Helsana", alpha = 0.5)))

# Insample accuracy ...
TModC(mods, ord="auc")
# ... is substantially different from the out-of-bag:
TModC(mods, newdata=d.pim$test, reference=d.pim$test$diabetes, ord="bs")
# C5 and SVM turn out to be show-offs! They overfit quite ordinary
# whereas randomforest and logit keep their promises. ...
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sapply(mods, function(z) VarImp(z))

# Multinomial classification problem with n classes ***************

d.gl <- SplitTrainTest(d.glass, p = 0.2)
mglass <- formula(Type ~ RI + Na + Mg + Al + Si + K + Ca + Ba + Fe)

# *** raises an unclear error in CRAN-Debian tests *** ??
# r.mult <- FitMod(mglass, data=d.gl$train, maxit=600, fitfn="multinom")
r.rp <- FitMod(mglass, data=d.gl$train, fitfn="rpart")
r.rf <- FitMod(mglass, data=d.gl$train, fitfn="randomForest")
r.svm <- FitMod(mglass, data=d.gl$train, fitfn="svm")
r.c5 <- FitMod(mglass, data=d.gl$train, fitfn="C5.0")
r.nn <- FitMod(mglass, data=d.gl$train, fitfn="nnet")
r.nbay <- FitMod(mglass, data=d.gl$train, fitfn="naive_bayes")
r.lda <- FitMod(mglass, data=d.gl$train, fitfn="lda")
# r.qda <- FitMod(mglass, data=d.glass, fitfn="qda")
r.lb <- FitMod(mglass, data=d.gl$train, fitfn="lb")

mods <- list(rp=r.rp, rf=r.rf, svm=r.svm, c5=r.c5,
nn=r.nn, nbay=r.nbay, lda=r.lda, lb=r.lb)

# confusion matrix and other quality measures can be calculated with Conf()
Conf(r.rf)

# we only extract the general accuracy
sapply(lapply(mods, function(z) Conf(z)), "[[", "acc")

# let's compare r.mult with a model without RI as predictor
# Conf(r.mult)
# Conf(update(r.mult, . ~ . -RI))

BestCut Best Cutpoint for a ROC Curve

Description

Returns the best cutpoint for a given classification model.

Usage

BestCut(x, method = c("youden", "closest.topleft"))

Arguments

x a roc object from the roc function

method one of "youden" or "closest.topleft", controls how the optimal threshold is
determined. See details.
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Details

The method argument controls how the optimal threshold is determined.

’youden’ Youden’s J statistic (Youden, 1950) is employed. The optimal cut-off is the threshold that
maximizes the distance to the identity (diagonal) line. Can be shortened to “y”.

The optimality criterion is:

max(sensitivities+ specificities)

’closest.topleft’ The optimal threshold is the point closest to the top-left part of the plot with
perfect sensitivity or specificity. Can be shortened to “c” or “t”.

The optimality criterion is:

min((1− sensitivities)2 + (1− specificities)2)

Value

the threshold value

Author(s)

Robin Xavier <pROC-cran@xavier.robin.name>, Andri Signorell <andri@signorell.net> (interface)

References

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package
for R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. doi:10.1186/
147121051277.

See Also

ROC

Examples

r.glm <- FitMod(diabetes ~ ., data = d.pima, fitfn="logit")

ROC(r.glm)
BestCut(ROC(r.glm))

https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
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bioChemists article production by graduate students in biochemistry Ph.D. pro-
grams

Description

A sample of 915 biochemistry graduate students.

Usage

data(bioChemists)

Format

art count of articles produced during last 3 years of Ph.D.

fem factor indicating gender of student, with levels Men and Women

mar factor indicating marital status of student, with levels Single and Married

kid5 number of children aged 5 or younger

phd prestige of Ph.D. department

ment count of articles produced by Ph.D. mentor during last 3 years

References

Long, J. Scott. 1990. The origins of sex differences in science. Social Forces. 68(3):1297-1316.

Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Thou-
sand Oaks, California: Sage.

BreuschPaganTest Breusch-Pagan Test

Description

Performs the Breusch-Pagan test against heteroskedasticity.

Usage

BreuschPaganTest(formula, varformula = NULL, studentize = TRUE, data = list())
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Arguments

formula a symbolic description for the model to be tested (or a fitted "lm" object).
varformula a formula describing only the potential explanatory variables for the variance

(no dependent variable needed). By default the same explanatory variables are
taken as in the main regression model.

studentize logical. If set to TRUE Koenker’s studentized version of the test statistic will be
used.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which BreuschPaganTest is called
from.

Details

The Breusch-Pagan test fits a linear regression model to the residuals of a linear regression model
(by default the same explanatory variables are taken as in the main regression model) and rejects if
too much of the variance is explained by the additional explanatory variables.

Under H0 the test statistic of the Breusch-Pagan test follows a chi-squared distribution with parameter
(the number of regressors without the constant in the model) degrees of freedom.

Examples can not only be found on this page, but also on the help pages of the data sets bondyield,
currencysubstitution, growthofmoney, moneydemand, unemployment, wages.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

parameter degrees of freedom.

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>

References

T.S. Breusch & A.R. Pagan (1979), A Simple Test for Heteroscedasticity and Random Coefficient
Variation. Econometrica 47, 1287–1294

R. Koenker (1981), A Note on Studentizing a Test for Heteroscedasticity. Journal of Econometrics
17, 107–112.

W. Kraemer & H. Sonnberger (1986), The Linear Regression Model under Test. Heidelberg: Phys-
ica

See Also

lm, ncvTest
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Examples

## generate a regressor
x <- rep(c(-1,1), 50)

## generate heteroskedastic and homoskedastic disturbances
err1 <- rnorm(100, sd=rep(c(1,2), 50))
err2 <- rnorm(100)

## generate a linear relationship
y1 <- 1 + x + err1
y2 <- 1 + x + err2

## perform Breusch-Pagan test
BreuschPaganTest(y1 ~ x)
BreuschPaganTest(y2 ~ x)

CoeffDiffCI Confidence Interval for the Difference of Two Coefficients in a Linear
Model

Description

Calculate the confidence interval for the difference of two coefficients in a linear model.

Usage

CoeffDiffCI(x, coeff, conf.level = 0.95, sides = c("two.sided", "left", "right"))

Arguments

x the linear model object
coeff a vector of length two, containing either the names or the index of the two coef-

ficients whose difference should be used
conf.level confidence level of the interval.
sides a character string specifying the side of the confidence interval, must be one

of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

Details

This is quite useful in the course of the modelling process.

Value

a numeric vector with 3 elements:

mean mean
lwr.ci lower bound of the confidence interval
upr.ci upper bound of the confidence interval
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Author(s)

Andri Signorell <andri@signorell.net>

See Also

linearHypothesis()

Examples

# get some model first...
r.lm <- FitMod(Fertility ~ ., data=swiss, fitfn="lm")

# calculate the confidence interval for the difference of the
# coefficients Examination and Education
CoeffDiffCI(r.lm, c("Examination", "Education"))

# the test could be calculated as
car::linearHypothesis(r.lm, "Education = Examination")

CP Complexity Parameter of an rpart Model

Description

Extracts, prints and plots the complexity table of an rpart model.

Usage

CP(x, ...)

## S3 method for class 'CP'
print(x, digits = getOption("digits") - 2L, ...)
## S3 method for class 'CP'
plot(x, minline = TRUE, lty = 3, col = 1,

upper = c("size", "splits", "none"), ...)

Arguments

x fitted model object of class "rpart". This is assumed to be the result of some
function that produces an object with the same named components as that re-
turned by the rpart function.

digits the number of digits of numbers to print.
minline whether a horizontal line is drawn 1SE above the minimum of the curve.
lty line type for this line
col colour for this line
upper what is plotted on the top axis: the size of the tree (the number of leaves)

("size"), the number of splits ("splits") or nothing ("none").
... further arguments passed to print and plot
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Details

The complexity parameter table is hidden deep in the entrails of the rpart result object, it is con-
venient to have a function to extract it.

Value

A list containing the following components:

cp the complexity table

x the rpart object

Author(s)

Andri Signorell <andri@signorell.net>

See Also

printcp, plotcp

Examples

r.rp <- FitMod(diabetes ~ ., d.pima, fitfn="rpart")

CP(r.rp)
plot(CP(r.rp))

d.glass Measurements of Forensic Glass Fragments

Description

The d.glass data frame has 214 rows and 10 columns. It was collected by B. German on fragments
of glass collected in forensic work.

Usage

d.glass

Format

This data frame contains the following columns:

RI refractive index; more precisely the refractive index is 1.518xxxx.
The next 8 measurements are percentages by weight of oxides.

Na sodium.

Mg manganese.

Al aluminium.
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Si silicon.

K potassium.

Ca calcium.

Ba barium.

Fe iron.

Type The fragments were originally classed into seven types, one of which was absent in this
dataset. The categories which occur are window float glass (WinF: 70), window non-float
glass (WinNF: 76), vehicle window glass (Veh: 17), containers (Con: 13), tableware (Tabl: 9)
and vehicle headlamps (Head: 29).

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

d.pima Diabetes survey on Pima Indians

Description

The National Institute of Diabetes and Digestive and Kidney Diseases conducted a study on 768
adult female Pima Indians living near Phoenix.

Usage

data(d.pima)
data(d.pima2)

Format

The dataset contains the following variables

pregnant Number of times pregnant

glucose Plasma glucose concentration at 2 hours in an oral glucose tolerance test

diastolic Diastolic blood pressure (mm Hg)

triceps Triceps skin fold thickness (mm)

insulin 2-Hour serum insulin (mu U/ml)

bmi Body mass index (weight in kg/(height in metres squared))

diabetes Diabetes pedigree function

age Age (years)

test test whether the patient shows signs of diabetes (coded 0 if negative, 1 if positive)

Details

d.pima2 is the same dataset as d.pima with the only change, that invalid 0-values are replaced by
NAs.



FitMod 15

Note

This dataset has been borrowed from Julian Faraway’s package:
faraway: Functions and datasets for books by Julian Faraway, 2015

Source

The data may be obtained from the package MASS.

FitMod Wrapper for Several Model Functions

Description

Popular implementations of algorithms are characterized by partly unconventional implementations
of the operating standards in R. For example, the function e1071::SVM() returns the predicted
values as attributes!
FitMod() is designed as a wrapping function to offer a consistent interface for a selection of most
often used classification and regression models.

Usage

FitMod(formula, data, ..., subset, na.action = na.pass, fitfn = NULL)

## S3 method for class 'FitMod'
predict(object, ...)
## S3 method for class 'FitMod'
plot(x, ...)
## S3 method for class 'FitMod'
summary(object, ...)
## S3 method for class 'FitMod'
drop1(object, ...)

Arguments

x a fitted object of class "FitMod".

formula a formula expression as for classification and regression models, of the form
response ~ predictors. The response should be a factor or a matrix with K
columns, which will be interpreted as counts for each of K classes. See the
documentation of formula() for other details.

data an optional data frame in which to interpret the variables occurring in formula.

subset expression saying which subset of the rows of the data should be used in the fit.
All observations are included by default.

na.action a function to filter missing data.
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fitfn code for the fitting function to be used for regression or classifying. So far im-
plemented are: lm, lmrob, poisson, quasipoisson, gamma, negbin, poisson,
polr, tobit, zeroinfl, multinom, poisson, rpart, randomForest, logit,
nnet, C5.0, lda, qda, svm, naive_bayes, lb.

object the model object.

... further arguments passed to the underlying functions.

Details

The function will in general return the original object, extended by a further class FitMod, which
allows to capture the output and plot routines.

The classifying algorithms will at the minimum offer the predicting options type = c("class",
"prob") additionally to those implemented by the underlying function.

Value

model object as returned by the calculating function extended with the FitMod class.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

lm, rpart

Examples

r.lm <- FitMod(Fertility ~ ., data=swiss, fitfn="lm")

r.logit <- FitMod(diabetes ~ glucose + pressure + mass + age,
data=d.pima, fitfn="logit")

r.svm <- FitMod(diabetes ~ glucose + pressure + mass + age,
data=d.pima, fitfn="svm")

LeafRates Leafrates for the Nodes of an ’rpart’ Tree

Description

Return the frequencies of correct and wrong classifications in given node(s) in tabular form. The
’purity’, denoting the relative frequency of correctly classified elements, is a useful information for
the interpretation of regression and classification trees and a measure for its quality.
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Usage

LeafRates(x)

## S3 method for class 'LeafRates'
plot(x, col = NULL, which = c("rel", "abs"),

layout = NULL, ylim = NULL, ...)

Arguments

x fitted model object of class rpart.

col color for the bars in the plot

which one out of "rel" or "abs", denoting whether relative or absolute frequencies
should be used for the plot.

layout vector defining the layout

ylim the y limits of the plot.

... further arguments (not used).

Details

The result comprises absolute and relative frequencies per leaf.

Value

A list with 5 elements consisting of:

node the node id (of the leaf)

freq the absolute frequency of correct and wrong classifications

p.row the relative frequency of correct and wrong classifications

mfreq the total number of cases

mperc the percentage of the sample in the leaf

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Node, Rules

Examples

r.rp <- FitMod(Species ~ ., data=iris, fitfn="rpart")
LeafRates(r.rp)

plot(LeafRates(r.rp))
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LogitBoost LogitBoost Classification Algorithm

Description

Train logitboost classification algorithm using decision stumps (one node decision trees) as weak
learners.

Usage

LogitBoost(x, ...)

## S3 method for class 'formula'
LogitBoost(formula, data, ..., subset, na.action)

## Default S3 method:
LogitBoost(x, y, nIter=ncol(x), ...)

Arguments

formula a formula expression as for regression models, of the form response ~ predictors.
The response should be a factor or a matrix with K columns, which will be in-
terpreted as counts for each of K classes. See the documentation of formula()
for other details.

data an optional data frame in which to interpret the variables occurring in formula.

... additional arguments for nnet

subset expression saying which subset of the rows of the data should be used in the fit.
All observations are included by default.

na.action a function to filter missing data.

x A matrix or data frame with training data. Rows contain samples and columns
contain features

y Class labels for the training data samples. A response vector with one label
for each row/component of xlearn. Can be either a factor, string or a numeric
vector.

nIter An integer, describing the number of iterations for which boosting should be
run, or number of decision stumps that will be used.

Details

The function was adapted from logitboost.R function written by Marcel Dettling. See references
and "See Also" section. The code was modified in order to make it much faster for very large data
sets. The speed-up was achieved by implementing a internal version of decision stump classifier
instead of using calls to rpart. That way, some of the most time consuming operations were
precomputed once, instead of performing them at each iteration. Another difference is that training
and testing phases of the classification process were split into separate functions.
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Value

An object of class "LogitBoost" including components:

Stump List of decision stumps (one node decision trees) used:

• column 1: feature numbers or each stump, or which column each stump
operates on

• column 2: threshold to be used for that column

• column 3: bigger/smaller info: 1 means that if values in the column are
above threshold than corresponding samples will be labeled as lablist[1].
Value "-1" means the opposite.

If there are more than two classes, than several "Stumps" will be cbind’ed

lablist names of each class

Author(s)

Jarek Tuszynski (SAIC) <jaroslaw.w.tuszynski@saic.com>

References

Dettling and Buhlmann (2002), Boosting for Tumor Classification of Gene Expression Data.

Examples

# basic interface
r.lb <- LogitBoost(Species ~ ., data=iris, nIter=20)
pred <- predict(r.lb)
prob <- predict(r.lb, type="prob")
d.res <- data.frame(pred, prob)
d.res[1:10, ]

# accuracy increases with nIter (at least for train set)
table(predict(r.lb, iris, type="class", nIter= 2), iris$Species)
table(predict(r.lb, iris, type="class", nIter=10), iris$Species)
table(predict(r.lb, iris, type="class"), iris$Species)

# example of spliting the data into train and test set
d.set <- SplitTrainTest(iris)
r.lb <- LogitBoost(Species ~ ., data=d.set$train, nIter=10)
table(predict(r.lb, d.set$test, type="class", nIter=2), d.set$test$Species)
table(predict(r.lb, d.set$test, type="class"), d.set$test$Species)
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Node Nodes and Splits in an rpart Tree

Description

The rpart result object has a complex and compact design. This can make practical use tedious for
occasional users as it is difficult to figure out how to access some specific information. The function
Node() is designed as accessor to the most important properties of a node, being a ’split’ or a ’leaf’
(aka. ’endnode’). It also serves as base for further convenience functions as e.g. LeafRates().

Usage

Node(x, node = NULL, type = c("all", "split", "leaf"), digits = 3)

Arguments

x fitted model object of class rpart.

node integer vector, defining the nodes whose details are required.

type one out of "all" (default), "split", "leaf", where the latter two restrict the
result set to splits or end nodes only. Can be abbreviated.

digits the number of digits for numeric values

Details

Node() returns detailed information for a single node in the tree. It reports all the data in the
summary of a node, but with the option to provide a nodelist. The structure of the result is organised
as a list.

Value

A list containing:

id int, id of the node

vname character, one out of 'leaf' or 'split'

isleaf logical, TRUE for leaves FALSE else

nobs integer, number of observation in the node

group character, the predicted class for the node

ycount numeric, the number of observation per class in the node

yprob numeric, the relative frequencies for the each class

nodeprob the global probability for an observation to fall in the node

complexity numeric, the complexity parameter for the node

tprint character, the text to be printed
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Author(s)

Andri Signorell <andri@signorell.net>

See Also

LeafRates, Rules

Examples

r.rpart <- FitMod(Species ~ ., data=iris, fitfn="rpart")
# return Node nr. 3
Node(r.rpart, node=3)

r.rp <- FitMod(Type ~ ., data = d.glass, fitfn="rpart")
# return all the splits
Node(r.rpart, type="split")

Over-/Undersample Oversample and Undersample

Description

For classification purposes we might want to have balanced datasets. If the response variable has
not a prevalence of 50%, we can sample records for getting as much response A cases as response
B. This is called oversample. Undersample means to sample the (lower) number of cases A from
the records of case B.

Usage

OverSample(x, vname)
UnderSample(x, vname)

Arguments

x a data frame containing predictors and response

vname the name of the response variable to be used to over/undersample

Value

a data frame with balanced response variable

Author(s)

Andri Signorell <andri@signorell.net>

See Also

BestCut
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Examples

OverSample(d.pima2, "diabetes")

UnderSample(d.pima2, "diabetes")

PlotLift Lift Charts to Compare Binary Predictive Models

Description

Provides either a total cumulative response or incremental response rate lift chart for the purposes
of comparing the predictive capability of different binary predictive models.

Usage

PlotLift(modelList, data, targLevel, trueResp, type = "cumulative", sub = "")

Arguments

modelList A character vector containing the names of the different models to be compared.
The selected models must have the same y variable that must be a binary factor,
and have been estimated using the same data set.

data The dataframe that constitues the comparison sample. If this dataframe is not
the same as the dataframe used to estimated models, the dataframe must contain
all the variables used in the models to be compared.

targLevel The label for the level of the binary factor of interest. For example, in a database
marketing application, this level could be "Yes" for a variable that takes on the
values "Yes" and "No" to indicate if a customer responded favorably to a pro-
motion offer.

trueResp The true rate of the target level for the master database the estimation and com-
parison dataframes were originally drawn from.

type A character string that must either have the value of "cummulative" (to produce
a total cummaltive response chart) or "incremental" (to produce an incremental
response rate chart).

sub A sub-title for the plot, typically to identify the sample used.

Details

Lift charts are a commonly used tool in business data mining applications. They are used to assess
how well a model is able to predict a desirable (from an organization’s point-of-view) response
on the part of a customer compared to alternative estimated models and a benchmark model of
approaching customers randomly. The total cummulative response chart shows the percentage of
the total response the organization would receive from only contacting a given percentage (grouped
by deciles) of its entire customer base. This chart is best for selecting between alternative models,
and in predicting the revenues the organization will receive by contacting a given percentage of
their customers that the model predicts are most likely to favorably respond. The incremental
response rate chart provides the response rate among each of ten decile groups of the organization’s
customers, with the decile groups ordered by their estimated likelihood of a favorable response.
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Value

The function returns the sample response invisibly.

Author(s)

original Dan Putler, tweaks Andri Signorell <andri@signorell.net>

Examples

d.pim <- SplitTrainTest(d.pima, p = 0.2)

r.rp <- FitMod(diabetes ~ pregnant + glucose + pressure + triceps
+ insulin + mass + pedigree + age
, data=d.pim$train, fitfn="rpart")

r.glm <- FitMod(diabetes ~ pregnant + glucose + pressure + triceps
+ insulin + mass + pedigree + age
, data=d.pim$train, fitfn="logit")

r.nn <- FitMod(diabetes ~ pregnant + glucose + pressure + triceps
+ insulin + mass + pedigree + age
, data=d.pim$train, fitfn="nnet")

oldpar <- par(mfrow=c(1,2))
PlotLift(c("r.rp", "r.glm", "r.nn"), data = d.pim$train,

targLevel = "pos", trueResp =0.34, type = "cumulative")
PlotLift(c("r.rp", "r.glm", "r.nn"), data = d.pim$train,

targLevel = "pos", trueResp =0.34, type = "incremental")
par(oldpar)

predict.zeroinfl Methods for zeroinfl Objects

Description

Methods for extracting information from fitted zero-inflated regression model objects of class "zeroinfl".

Usage

## S3 method for class 'zeroinfl'
predict(object, newdata,
type = c("response", "prob", "count", "zero"), na.action = na.pass,
at = NULL, ...)

## S3 method for class 'zeroinfl'
residuals(object, type = c("pearson", "response"), ...)

## S3 method for class 'zeroinfl'
coef(object, model = c("full", "count", "zero"), ...)
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## S3 method for class 'zeroinfl'
vcov(object, model = c("full", "count", "zero"), ...)

## S3 method for class 'zeroinfl'
terms(x, model = c("count", "zero"), ...)
## S3 method for class 'zeroinfl'
model.matrix(object, model = c("count", "zero"), ...)

Arguments

object, x an object of class "zeroinfl" as returned by zeroinfl.

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

type character specifying the type of predictions or residuals, respectively. For details
see below.

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

at optionally, if type = "prob", a numeric vector at which the probabilities are
evaluated. By default 0:max(y) is used where y is the original observed re-
sponse.

model character specifying for which component of the model the terms or model ma-
trix should be extracted.

... currently not used.

Details

A set of standard extractor functions for fitted model objects is available for objects of class "zeroinfl",
including methods to the generic functions print and summary which print the estimated coeffi-
cients along with some further information. The summary in particular supplies partial Wald tests
based on the coefficients and the covariance matrix (estimated from the Hessian in the numer-
ical optimization of the log-likelihood). As usual, the summary method returns an object of class
"summary.zeroinfl" containing the relevant summary statistics which can subsequently be printed
using the associated print method.

The methods for coef and vcov by default return a single vector of coefficients and their associ-
ated covariance matrix, respectively, i.e., all coefficients are concatenated. By setting the model
argument, the estimates for the corresponding model components can be extracted.

Both the fitted and predict methods can compute fitted responses. The latter additionally pro-
vides the predicted density (i.e., probabilities for the observed counts), the predicted mean from
the count component (without zero inflation) and the predicted probability for the zero component.
The residuals method can compute raw residuals (observed - fitted) and Pearson residuals (raw
residuals scaled by square root of variance function).

The terms and model.matrix extractors can be used to extract the relevant information for either
component of the model.

A logLik method is provided, hence AIC can be called to compute information criteria.
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Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>

See Also

zeroinfl

Examples

data("bioChemists", package = "ModTools")

fm_zip <- zeroinfl(art ~ ., data = bioChemists)
plot(residuals(fm_zip) ~ fitted(fm_zip))

coef(fm_zip)
coef(fm_zip, model = "count")

summary(fm_zip)
logLik(fm_zip)

PredictCI Confidence Intervals for Predictions of a GLM

Description

Provides confidence intervals for predictions of a GLM.

Usage

PredictCI(mod, newdata, conf.level = 0.95)

Arguments

mod the binomial model

newdata the data to be predicted

conf.level confidence level of the interval. Default is 0.95.

Details

The confidence intervals for predictions are calculated with the se of the model and the normal
quantile.

Value

a matrix with 3 columns for the fit, the lower confidence interval and the upper confidence interval

Author(s)

Andri Signorell <andri@signorell.net>
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References

https://stackoverflow.com/questions/14423325/confidence-intervals-for-predictions-from-logistic-regression

See Also

FitMod

Examples

r.logit <- FitMod(diabetes ~ age, d.pima, fitfn = "logit")
head(PredictCI(r.logit, newdata=d.pima))

RefLevel Used Reference Levels in a Linear Model

Description

Returns all the reference levels in the factors used in a linear model. It is customer friendly to report
also the reference level in lm summaries, which normally are suppressed.

Usage

RefLevel(x)

Arguments

x lm object, linear model with factors as predictors.

Details

For reporting tables of linear models we might want to include an information about the used refer-
ence levels, which remain uncommented in the default lm result output. RefLevel() allows to add
a footnote or integrate the reference levels in the coefficient table.

Value

a named vector containing the reference levels of all factors

Note

It’s not clear how general the used algorithm is for more exotic models. dummy.coef could in such
cases be an alternative.

Author(s)

Andri Signorell <andri@signorell.net>

https://stackoverflow.com/questions/14423325/confidence-intervals-for-predictions-from-logistic-regression
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See Also

dummy.coef, Response, relevel, lm

Examples

RefLevel(lm(breaks ~ wool + tension, data = warpbreaks))

Response Extract the Response from Several Models

Description

Time after time, in the course of our daily work, we experience that the response variable is hid-
den very deeply in the object. This again leads to superfluous consultation of the documentation.
Reponse() relieves us of this work.

Usage

Response(x, ...)

Arguments

x the model to use
... more arguments

Details

The function implements the extraction of the response variables for all the models listed in the
package’s help text.

Value

the response of model x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

model.frame, model.response, RefLevel

Examples

r.rpart <- FitMod(diabetes ~ ., d.pima, fitfn="rpart")
Response(r.rpart)

# up to the attribute "response" this is the same
identical(StripAttr(Response(r.rpart), "response"),

model.response(model.frame(r.rpart)))
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RobSummary Robust Summary for Linear Models

Description

For poisson models with mild violation of the distribution assumption that the variance equals the
mean, Cameron and Trivedi (2009) recommended using robust standard errors for the parameter
estimates. The function uses the function vcovHC from the package sandwich to obtain the robust
standard errors and calculate the p-values accordingly. It returns a matrix containing the usual
results in the model summary, comprising the parameter estimates, their robust standard errors,
p-values, extended with the 95% confidence interval.

Usage

RobSummary(mod, conf.level = 0.95, type = "HC0")

Arguments

mod the model for which robust standard errors should be calculated
conf.level the confidence level, default is 95%.
type a character string specifying the estimation type. Details in vcovHC().

Details

Further details in https://stats.oarc.ucla.edu/r/dae/poisson-regression/

Value

a p x 6 matrix with columns for the estimated coefficient, its standard error, t- or z-statistic, the
corresponding (two-sided) p-value, the lower and upper confidence interval.

Author(s)

Andri Signorell <andri@signorell.net>

References

Cameron, A. C. and Trivedi, P. K. (2009) Microeconometrics Using Stata. College Station, TX:
Stata Press.

See Also

summary.lm, summary.glm

Examples

r.lm <- lm(Fertility ~ ., swiss)
RobSummary(r.lm)

https://stats.oarc.ucla.edu/r/dae/poisson-regression/
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ROC Build a ROC curve

Description

This is a wrapper to the main function pROC of the pROC package (by Xavier Robin et al.). It builds
a ROC curve and returns a "roc" object, a list of class "roc".

Usage

ROC(x, resp = NULL, ...)

Arguments

x a model object, or the predicted probabilities, when resp is not NULL.

resp the response

... all arguments are passed to roc().

Details

Partial ROC is calculated following Peterson et al. (2008; doi:10.1016/j.ecolmodel.2007.11.008).
This function is a modification of the PartialROC funcion, available at https://github.com/
narayanibarve/ENMGadgets.

Value

A data.frame containing the AUC values and AUC ratios calculated for each iteration.

Author(s)

Andri Signorell <andri@signorell.net>

References

Peterson, A.T. et al. (2008) Rethinking receiver operating characteristic analysis applications in
ecological niche modeling. Ecol. Modell., 213, 63-72.

See Also

pROC

https://doi.org/10.1016/j.ecolmodel.2007.11.008
https://github.com/narayanibarve/ENMGadgets
https://github.com/narayanibarve/ENMGadgets
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Examples

r.glm <- FitMod(diabetes ~ ., data = d.pima, fitfn="logit")
ROC(r.glm)

# plot ROC curves for a list of models
r.rp <- FitMod(diabetes ~ ., data = d.pima, fitfn="rpart")

# combine models to a list
mlst <- list(r.glm, r.rp)

# do the plot
for(i in seq_along(mlst))

if(i==1){
plot(ROC(mlst[[i]], grid=TRUE, col=c(hred, hblue)[i]))

} else {
lines(ROC(mlst[[i]], col=c(hred, hblue)[i]))

}

Rules Extract Rules from ’rpart’ Object

Description

Extract rules from an rpart object. This can be useful, if the rules must be implemented in another
system. The rules contain all the criteria for the binary splits of an rpart tree from the root node
down to the specified leaf.

Usage

Rules(x, node = NULL, leafonly = FALSE)

Arguments

x the rpart object to extract the rules from
node integer vector, defining the nodes whose details are required.
leafonly boolean, defining if only the rules leading to end nodes ("leafs") should be re-

turned.

Details

The function builds upon the original function path.rpart, which is bulky in some situations.

Value

a list with the rules

frame the frame of the rpart
ylevels the y values of the node
ds.size the size of the dataset
path a list of character vecotrs containing the rules
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Author(s)

Andri Signorell <andri@signorell.net>

See Also

rpart, path.rpart

Examples

r.rp <- FitMod(diabetes ~ ., data=d.pima, fitfn="rpart")
Rules(r.rp)

SplitTrainTest Split DataFrame in Train an Test Sample

Description

For modeling we usually split our data frame in a train sample, where we train our model on, and a
test sample, where we test, how good it works. This function splits a given data frame in two parts,
one being the training sample and the other the test sample in form of a list with two elements.

Usage

SplitTrainTest(x, p = 0.1, seed = NULL, logical = FALSE)

Arguments

x data.frame

p proportion for test sample. Default is 10%.

seed initialization for random number generator.

logical logical, defining if a logical vector should be returned or the list with train and
test data. Default is FALSE.

Details

In order to obtain reasonable models, we should ensure two points. The dataset must be large
enough to yield statistically meaningful results and it should be representative of the data set as a
whole. Assuming that our test set meets the preceding two conditions, our goal is to create a model
that generalizes well to new data. We are aiming for a model that equally well predicts training
and test data. We should never train on test data. If we are seeing surprisingly good results on the
evaluation metrics, it might be a sign that we’re accidentally training on the test set.

Value

If logical is FALSE a list with two data frames, train and test, of the same structure as the given
data in x
if logical is TRUE a logical vector containing nrow elements of TRUE and FALSE
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Author(s)

Andri Signorell <andri@signorell.net>

Examples

SplitTrainTest(d.pima)

TModC Compare Classification Models

Description

For the comparison of several classification models, the AUC values and BrierScore values of the
models are determined and tabulated. Both the absolute values and the relative values are reported,
each related to the model with the highest corresponding value.

Usage

TModC(..., newdata = NULL, reference = NULL, ord = NULL)

## S3 method for class 'TModC'
plot(x, col = NULL, args.legend = NULL,...)

Arguments

... the models to be compared
x TModC object to plot
newdata the data to use for predicting. If not provided, the model.frame will be used.
reference the reference values
ord character defining the order of the results table, can be any of "auc", "bs",

"auc_p", "bs_p", "bs_rnk", "auc_rnk", "ensemble" (using the mean of "auc_p"
and "bs_p" for the ranking).

col the color for the lines in the ROC plot
args.legend the legend to be placed in the ROC plot

Value

a matrix with the columns

auc absolute value of area under the ROC curve (AUC)
auc_p percentage of the auc based on the best observerd AUC
auc_rnk the rank of the auc
bs absolute value of the Brier score
bs_p percentage of the Brier score based on the best observed BS
bs_rnk the rank of the BS
auc_grnk character representation of the AUC rank
bs_grnk character representation of the BS rank
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Author(s)

Andri Signorell <andri@signorell.net>

See Also

TMod, BrierScore, AUC, ROC

Examples

d.pim <- SplitTrainTest(d.pima, p = 0.2)
mdiab <- formula(diabetes ~ pregnant + glucose + pressure + triceps +

insulin + mass + pedigree + age)

r.glm <- FitMod(mdiab, data=d.pim$train, fitfn="logit")
r.rp <- FitMod(mdiab, data=d.pim$train, fitfn="rpart")
mods <- list(glm=r.glm, rp=r.rp)

# the table with the measures
(tm <- TModC(mods, ord="auc"))

# plotting the ROC curves
plot(tm, col=c("darkmagenta", "dodgerblue"))

Tobit Tobit Regression

Description

Fitting and testing Tobit regression models for censored data.

Usage

Tobit(formula, left = 0, right = Inf, dist = "gaussian",
subset = NULL, data = list(), ...)

Arguments

formula a symbolic description of a regression model of type y ~ x1 + x2 + ....

left left limit for the censored dependent variable y. If set to -Inf, y is assumed not
to be left-censored.

right right limit for the censored dependent variable y. If set to Inf, the default, y is
assumed not to be right-censored.

dist assumed distribution for the dependent variable y. This is passed to survreg,
see the respective man page for more details.

subset a specification of the rows to be used.

data a data frame containing the variables in the model.

... further arguments passed to survreg.
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Details

The function Tobit is an alias for the AER function tobit (Achim Zeileis <Achim.Zeileis@R-
project.org>). All details can be found there.

Value

An object of class "Tobit" inheriting from class "survreg".

Author(s)

Andri Signorell

Examples

# still to do

Tune Tune Classificators

Description

Some classifiers benefit more from adjusted parameters to a particular dataset than others. However,
it is often not clear from the beginning how the parameters have to be determined. What often only
remains is a grid search when several parameters have to be found in combination. The present
function uses a grid search approch for the decisive arguments (typically for a neural network,
a random forest or a classification tree). However it’s not restricted to these models, any model
fulfilling weak interface standards could be provided.

Usage

Tune(x, ..., testset = NULL, keepmod = TRUE)

Arguments

x the model to be tuned, best (but not necessarily) trained with FitMod.

... a list of parameters, containing the values to be used for a grid search.

testset a testset containing all variables required in the model to be used for calculating
independently the accuracy (normally a subset of the original dataset).

keepmod logical, defining if all fitted models should be returned in the result set. Default
is TRUE. (Keep an eye on your RAM!)
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Details

The function creates a n-dimensional grid according to the given parameters and calculates the
model with the combinations of all the parameters. The accuracy for the models are calculated
insample and on a test set, if one has been provided.

It makes sense to avoid overfitting to provide a test set to also be evaluated. A matrix with all
combination of the values for the given parameters, sorted by accuracy, either by the accuracy
achieved in the test set or the insample accuracy is returned.

Value

a matrix with all supplied parameters and a column "acc" and "test_acc" (if a test set has been
provided)

Author(s)

Andri Signorell <andri@signorell.net>

Examples

d.pim <- SplitTrainTest(d.pima, p = 0.2)
mdiab <- formula(diabetes ~ pregnant + glucose + pressure + triceps

+ insulin + mass + pedigree + age)

# tune a neural network for size and decay
r.nn <- FitMod(mdiab, data=d.pim$train, fitfn="nnet")
(tu <- Tune(r.nn, size=12:17, decay = 10^(-4:-1), testset=d.pim$test))

# tune a random forest
r.rf <- FitMod(mdiab, data=d.pim$train, fitfn="randomForest")
(tu <- Tune(r.rf, mtry=seq(2, 20, 2), testset=d.pim$test))

# tune a SVM model
r.svm <- FitMod(mdiab, data=d.pim$train, fitfn="svm")

tu <- Tune(r.svm,
kernel=c("radial", "sigmoid"),
cost=c(0.1,1,10,100,1000),
gamma=c(0.5,1,2,3,4), testset=d.pim$test)

# let's get some more quality measures
tu$modpar$Sens <- sapply(tu$mods, Sens) # Sensitivity
tu$modpar$Spec <- sapply(tu$mods, Spec) # Specificity
Sort(tu$modpar, ord="test_acc", decreasing=TRUE)
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VarImp Variable Importance for Regression and Classification Models

Description

Variable importance is an expression of the desire to know how important a variable is within a
group of predictors for a particular model. But in general it is not a well defined concept, say there
is no theoretically defined variable importance metric. Nevertheless, there are some approaches that
have been established in practice for some regression and classification algorithms. The present
function provides an interface for calculating variable importance for some of the models produced
by FitMod, comprising linear models, classification trees, random forests, C5 trees and neural net-
works. The intention here is to provide reasonably homogeneous output and plot routines.

Usage

VarImp(x, scale = FALSE, sort = TRUE, ...)

## S3 method for class 'FitMod'
VarImp(x, scale = FALSE, sort = TRUE, type=NULL, ...)
## Default S3 method:
VarImp(x, scale = FALSE, sort = TRUE, ...)

## S3 method for class 'VarImp'
plot(x, sort = TRUE, maxrows = NULL,

main = "Variable importance", ...)

## S3 method for class 'VarImp'
print(x, digits = 3, ...)

Arguments

x the fitted model

scale logical, should the importance values be scaled to 0 and 100?

... parameters to pass to the specific VarImp methods

sort the name of the column, the importance table should be ordered after

maxrows the maximum number of rows to be reported

main the main title for the plot

type some models have more than one type available to produce a variable impor-
tance. Linear models accept one of "lmg", "pmvd", "first", "last", "betasq",
"pratt".

digits the number of digits for printing the "VarImp" table
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Details

Linear Models: For linear models there’s a fine package relaimpo available on CRAN
containing several interesting approaches for quantifying the variable importance. See the original
documentation.

rpart, Random Forest: VarImp.rpart and VarImp.randomForest are wrappers around the
importance functions from the rpart or randomForest packages, respectively.

C5.0: C5.0 measures predictor importance by determining the percentage of training set
samples that fall into all the terminal nodes after the split. For example, the predictor in the first
split automatically has an importance measurement of 100 percent since all samples are affected
by this split. Other predictors may be used frequently in splits, but if the terminal nodes cover
only a handful of training set samples, the importance scores may be close to zero. The same
strategy is applied to rule-based models and boosted versions of the model. The underlying function
can also return the number of times each predictor was involved in a split by using the option
metric="usage".

Neural Networks: The method used here is "Garson weights".

SVM, GLM, Multinom: There are no implementations for these models so far.

Value

A data frame with class c("VarImp.train", "data.frame") for VarImp.train or a matrix for
other models.

Author(s)

Andri Signorell <andri@signorell.net>

References

Quinlan, J. (1992). Learning with continuous classes. Proceedings of the 5th Australian Joint
Conference On Artificial Intelligence, 343-348.

zeroinfl Zero-inflated Count Data Regression

Description

Fit zero-inflated regression models for count data via maximum likelihood.

Usage

zeroinfl(formula, data, subset, na.action, weights, offset,
dist = c("poisson", "negbin", "geometric"),
link = c("logit", "probit", "cloglog", "cauchit", "log"),
control = zeroinfl.control(...),
model = TRUE, y = TRUE, x = FALSE, ...)
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Arguments

formula symbolic description of the model, see details.

data, subset, na.action
arguments controlling formula processing via model.frame.

weights optional numeric vector of weights.

offset optional numeric vector with an a priori known component to be included in the
linear predictor of the count model. See below for more information on offsets.

dist character specification of count model family (a log link is always used).

link character specification of link function in the binary zero-inflation model (a bi-
nomial family is always used).

control a list of control arguments specified via zeroinfl.control.

model, y, x logicals. If TRUE the corresponding components of the fit (model frame, re-
sponse, model matrix) are returned.

... arguments passed to zeroinfl.control in the default setup.

Details

Zero-inflated count models are two-component mixture models combining a point mass at zero
with a proper count distribution. Thus, there are two sources of zeros: zeros may come from both
the point mass and from the count component. Usually the count model is a Poisson or negative
binomial regression (with log link). The geometric distribution is a special case of the negative
binomial with size parameter equal to 1. For modeling the unobserved state (zero vs. count), a
binary model is used that captures the probability of zero inflation. in the simplest case only with
an intercept but potentially containing regressors. For this zero-inflation model, a binomial model
with different links can be used, typically logit or probit.

The formula can be used to specify both components of the model: If a formula of type y ~ x1
+ x2 is supplied, then the same regressors are employed in both components. This is equivalent to
y ~ x1 + x2 | x1 + x2. Of course, a different set of regressors could be specified for the count and
zero-inflation component, e.g., y ~ x1 + x2 | z1 + z2 + z3 giving the count data model y ~ x1 + x2
conditional on (|) the zero-inflation model y ~ z1 + z2 + z3. A simple inflation model where all
zero counts have the same probability of belonging to the zero component can by specified by the
formula y ~ x1 + x2 | 1.

Offsets can be specified in both components of the model pertaining to count and zero-inflation
model: y ~ x1 + offset(x2) | z1 + z2 + offset(z3), where x2 is used as an offset (i.e., with co-
efficient fixed to 1) in the count component and z3 analogously in the zero-inflation component. By
the rule stated above y ~ x1 + offset(x2) is expanded to y ~ x1 + offset(x2) | x1 + offset(x2).
Instead of using the offset() wrapper within the formula, the offset argument can also be em-
ployed which sets an offset only for the count model. Thus, formula = y ~ x1 and offset = x2 is
equivalent to formula = y ~ x1 + offset(x2) | x1.

All parameters are estimated by maximum likelihood using optim, with control options set in
zeroinfl.control. Starting values can be supplied, estimated by the EM (expectation maxi-
mization) algorithm, or by glm.fit (the default). Standard errors are derived numerically using the
Hessian matrix returned by optim. See zeroinfl.control for details.
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The returned fitted model object is of class "zeroinfl" and is similar to fitted "glm" objects. For
elements such as "coefficients" or "terms" a list is returned with elements for the zero and
count component, respectively. For details see below.

A set of standard extractor functions for fitted model objects is available for objects of class "zeroinfl",
including methods to the generic functions print, summary, coef, vcov, logLik, residuals,
predict, fitted, terms, model.matrix. See predict.zeroinfl for more details on all meth-
ods.

Value

An object of class "zeroinfl", i.e., a list with components including

coefficients a list with elements "count" and "zero" containing the coefficients from the
respective models,

residuals a vector of raw residuals (observed - fitted),

fitted.values a vector of fitted means,

optim a list with the output from the optim call for minimizing the negative log-
likelihood,

control the control arguments passed to the optim call,

start the starting values for the parameters passed to the optim call,

weights the case weights used,

offset a list with elements "count" and "zero" containing the offset vectors (if any)
from the respective models,

n number of observations (with weights > 0),

df.null residual degrees of freedom for the null model (= n - 2),

df.residual residual degrees of freedom for fitted model,

terms a list with elements "count", "zero" and "full" containing the terms objects
for the respective models,

theta estimate of the additional θ parameter of the negative binomial model (if a neg-
ative binomial regression is used),

SE.logtheta standard error for log(θ),

loglik log-likelihood of the fitted model,

vcov covariance matrix of all coefficients in the model (derived from the Hessian of
the optim output),

dist character string describing the count distribution used,

link character string describing the link of the zero-inflation model,

linkinv the inverse link function corresponding to link,

converged logical indicating successful convergence of optim,

call the original function call,

formula the original formula,

levels levels of the categorical regressors,
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contrasts a list with elements "count" and "zero" containing the contrasts corresponding
to levels from the respective models,

model the full model frame (if model = TRUE),

y the response count vector (if y = TRUE),

x a list with elements "count" and "zero" containing the model matrices from
the respective models (if x = TRUE),

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>

References

Cameron, A. Colin and Pravin K. Trevedi. 1998. Regression Analysis of Count Data. New York:
Cambridge University Press.

Cameron, A. Colin and Pravin K. Trivedi. 2005. Microeconometrics: Methods and Applications.
Cambridge: Cambridge University Press.

Lambert, Diane. 1992. “Zero-Inflated Poisson Regression, with an Application to Defects in Man-
ufacturing.” Technometrics. 34(1):1-14

Zeileis, Achim, Christian Kleiber and Simon Jackman 2008. “Regression Models for Count Data
in R.” Journal of Statistical Software, 27(8). URL https://www.jstatsoft.org/v27/i08/.

See Also

zeroinfl.control, glm, glm.fit, glm.nb, hurdle

Examples

## data
data("bioChemists", package = "ModTools")

## without inflation
## ("art ~ ." is "art ~ fem + mar + kid5 + phd + ment")
fm_pois <- glm(art ~ ., data = bioChemists, family = poisson)
fm_qpois <- glm(art ~ ., data = bioChemists, family = quasipoisson)
fm_nb <- MASS::glm.nb(art ~ ., data = bioChemists)

## with simple inflation (no regressors for zero component)
fm_zip <- zeroinfl(art ~ . | 1, data = bioChemists)
fm_zinb <- zeroinfl(art ~ . | 1, data = bioChemists, dist = "negbin")

## inflation with regressors
## ("art ~ . | ." is "art ~ fem + mar + kid5 + phd + ment | fem + mar + kid5 + phd + ment")
fm_zip2 <- zeroinfl(art ~ . | ., data = bioChemists)
fm_zinb2 <- zeroinfl(art ~ . | ., data = bioChemists, dist = "negbin")

https://www.jstatsoft.org/v27/i08/
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zeroinfl.control Control Parameters for Zero-inflated Count Data Regression

Description

Various parameters that control fitting of zero-inflated regression models using zeroinfl.

Usage

zeroinfl.control(method = "BFGS", maxit = 10000, trace = FALSE,
EM = FALSE, start = NULL, ...)

Arguments

method characters string specifying the method argument passed to optim.
maxit integer specifying the maxit argument (maximal number of iterations) passed

to optim.
trace logical or integer controlling whether tracing information on the progress of the

optimization should be produced (passed to optim).
EM logical. Should starting values be estimated by the EM (expectation maximiza-

tion) algorithm? See details.
start an optional list with elements "count" and "zero" (and potentially "theta")

containing the coefficients for the corresponding component.
... arguments passed to optim.

Details

All parameters in zeroinfl are estimated by maximum likelihood using optim with control options
set in zeroinfl.control. Most arguments are passed on directly to optim, only trace is also used
within zeroinfl and EM/start control the choice of starting values for calling optim.

Starting values can be supplied, estimated by the EM (expectation maximization) algorithm, or by
glm.fit (the default). Standard errors are derived numerically using the Hessian matrix returned
by optim. To supply starting values, start should be a list with elements "count" and "zero" and
potentially "theta" (for negative binomial components only) containing the starting values for the
coefficients of the corresponding component of the model.

Value

A list with the arguments specified.

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>

See Also

zeroinfl
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Examples

## Not run:
data("bioChemists", package = "pscl")

## default start values
fm1 <- zeroinfl(art ~ ., data = bioChemists)

## use EM algorithm for start values
fm2 <- zeroinfl(art ~ ., data = bioChemists, EM = TRUE)

## user-supplied start values
fm3 <- zeroinfl(art ~ ., data = bioChemists,

start = list(count = c(0.7, -0.2, 0.1, -0.2, 0, 0), zero = -1.7))

## End(Not run)
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